6 research outputs found

    Quanta Burst Photography

    Full text link
    Single-photon avalanche diodes (SPADs) are an emerging sensor technology capable of detecting individual incident photons, and capturing their time-of-arrival with high timing precision. While these sensors were limited to single-pixel or low-resolution devices in the past, recently, large (up to 1 MPixel) SPAD arrays have been developed. These single-photon cameras (SPCs) are capable of capturing high-speed sequences of binary single-photon images with no read noise. We present quanta burst photography, a computational photography technique that leverages SPCs as passive imaging devices for photography in challenging conditions, including ultra low-light and fast motion. Inspired by recent success of conventional burst photography, we design algorithms that align and merge binary sequences captured by SPCs into intensity images with minimal motion blur and artifacts, high signal-to-noise ratio (SNR), and high dynamic range. We theoretically analyze the SNR and dynamic range of quanta burst photography, and identify the imaging regimes where it provides significant benefits. We demonstrate, via a recently developed SPAD array, that the proposed method is able to generate high-quality images for scenes with challenging lighting, complex geometries, high dynamic range and moving objects. With the ongoing development of SPAD arrays, we envision quanta burst photography finding applications in both consumer and scientific photography.Comment: A version with better-quality images can be found on the project webpage: http://wisionlab.cs.wisc.edu/project/quanta-burst-photography

    Challenges and prospects for multi-chip microlens imprints on front-side illuminated SPAD imagers

    Full text link
    The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low as ∼10%), and large size (up to 10 mm). In this work we report on the implementation of refractive microlenses by means of photoresist masters, used to fabricate molds for imprints of UV curable hybrid polymers deposited on SPAD arrays. Replications were successfully carried out for the first time, to the best of our knowledge, at wafer reticle level on different designs in the same technology and on single large SPAD arrays with very thin residual layers (∼10 µm), as needed for better efficiency at higher numerical aperture (NA > 0.25). In general, concentration factors within 15-20% of the simulation results were obtained for the smaller arrays (32×32 and 512×1), achieving for example an effective fill factor of 75.6-83.2% for a 28.5 µm pixel pitch with a native fill factor of 28%. A concentration factor up to 4.2 was measured on large 512×512 arrays with a pixel pitch of 16.38 µm and a native fill factor of 10.5%, whereas improved simulation tools could give a better estimate of the actual concentration factor. Spectral measurements were also carried out, resulting in good and uniform transmission in the visible and NIR

    Fluorescence lifetime imaging with a single-photon SPAD array using long overlapping gates: an experimental and theoretical study

    No full text
    Developing large arrays of single-photon avalanche diodes (SPADs) with on-chip time-correlated single-photon counting (TCSPC) capabilities continues to be a difficult task due to stringent silicon real estate constraints, high data rates and system complexity. As an alternative to TCSPC, time-gated architectures have been proposed, where the numbers of photons detected within different time gates are used as a replacement to the usual time-resolved luminescence decay. However, because of technological limitations, the minimum gate length implement is on the order of nanoseconds, longer than most fluorophore lifetimes of interest. However, recent FLIM measurements have shown that it is mainly the gate step and rise/fall time, rather than its length, which determine lifetime resolution. In addition, the large number of photons captured by longer gates results in higher SNR. In this paper, we study the effects of using long, overlapping gates on lifetime extraction by phasor analysis, using a recently developed 512×512 time-gated SPAD array. The experiments used Cy3B, Rhodamine 6G and Atto550 dyes as test samples. The gate window length was varied between 11.3 ns and 23 ns while the gate step was varied between 17.86 ps and 3 ns. We validated the results with a standard TCSPC setup and investigated the case of multi-exponential samples through simulations. Results indicate that lifetime extraction is not degraded by the use of longer gates, nor is the ability to resolve multi-exponential decays

    LinoSPAD2: A 512×1 linear SPAD camera with system-level 135-ps SPTR and a reconfigurable computational engine for time-resolved single-photon imaging

    No full text
    The LinoSPAD2 camera combines a 512×1 linear single-photon avalanche diode (SPAD) array with an FPGA-based photon-counting and time-stamping platform, to create a reconfigurable sensing system capable of detecting single photons. The read-out is fully parallel, where each SPAD is connected to a different FPGA input. The hardware can be reconfigured to achieve different functionalities, such as photon counters, time-to-digital converter (TDC) arrays and histogramming units. Time stamping is performed by an array of 64 TDCs, with 20 ps resolution (LSB), serving 256 channels by means of 4:1 sharing. At sensor level, the pixel pitch is 26.2 μm with a fill factor of 25.1%. The median dark count rate of each SPAD at room temperature is below 100 cps at 6V excess bias, the single-photon timing resolution (SPTR) of each channel is 50 ps FWHM, and the peak photon detection probability reaches ~50% at 510 nm at the same excess bias. The fill factor can be increased by 2.3× by means of microlenses, with good spatial uniformity and flat spectral response above 400 nm. At system level, the average instrument response function (IRF) is 135 ps FWHM. The LinoSPAD2 camera enables a wide range of time-of-flight and time-resolved applications, including 3D imaging, fluorescence lifetime imaging microscopy (FLIM), heralded spectroscopy, and compressive Raman imaging, to name a few. Thanks to its features, LinoSPAD2 is a novel generation of reconfigurable single-photon image sensors capable of adapting their read-out and processing to match application-specific requirements, and combining SPAD arrays with advanced, massively-parallel computational functionalities. Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QCD/DiCarlo La
    corecore